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CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 
VIA HOMOMORPHIC IMAGES 

ALEXANDER HULPKE 

ABSTRACT. The lifting of results from factor groups to the full group is a 
standard technique for solvable groups. This paper shows how to utilize this 
approach in the case of non-solvable normal subgroups to compute the conju- 
gacy classes of a finite group. 

1. INTRODUCTION 

The determination of all conjugacy classes of a finite permutation group G has 
already been the subject of several studies [18, 2, 3, 5]. A first approach is to check 
random group elements for conjugacy until representatives for all conjugacy classes 
have been found. Despite the simplicity this approach works quite effectively if there 
are few and large conjugacy classes, for example if the group is almost simple. As 
soon as there are small conjugacy classes, however, the algorithm will not finish 
in reasonable time, because representatives from these classes will not be found. 
Thus one of the main objectives of any better conjugacy class algorithm has to 
be the creation of a list of group elements of sufficiently small size which contains 
representatives for all classes. 

The inductive approach [3] considers elements as roots of their prime-order pow- 
ers. Thus every element can be found in the centralizer of a p-element. These ele- 
ments themselves will be found in the Sylow subgroups, which are usually smaller 
than the group and for which effective methods for the determination of conjugacy 
classes are known [8]. 

In some cases, however the sheer size of p-element centralizers and the number of 
rational classes in a Sylow subgroup may render this approach unusable. A typical 
example is the group 

[IS21]2 = ((1,2,3),(1,2,3,4,5,6,7,8,9,10,11),(1,2)(12,13) 

(1,12) (2,13) (3,14) (4,15) (5,16) (6,17) (7, 18) (8, 19) (9, 20) (10, 21) (11, 22)) 

of degree 22. In this group, for example, the element (1, 2, 3) has a centralizer of 
size 21437537211 and the 2-Sylow subgroup has 460 classes which fuse to only 70 
classes of 2-elements in the full group. 
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Definition 1. A group H which is the direct product of simple groups of the same 
type, H _ T x ... x T (T simple), is called elementary. If T (and H) are abelian, 
H is called elementary abelian. 

If G possesses an elementary abelian normal subgroup N, the problem can be 
reduced substantially: provided the classes of G/N are known, the classes of G can 
be lifted from these by an affine action on N. This leads to an efficient algorithm to 
determine all conjugacy classes of solvable groups given by PC presentations [15]. 
As a PC presentation can be computed easily for solvable permutation groups [19], 
we will only have to consider non-solvable permutation groups further on. 

In fact, the affine method from [15] does not require the factor group to be 
solvable, and so we can in principle even restrict to groups with no solvable normal 
subgroup. In [5] it is shown that groups of this type have a large normal subgroup 
that is a direct product. In [5], the authors then suggest parametrizing the classes in 
this normal subgroup and using a random search outside. Again, however, groups 
like [IS21]2 tend to possess some very small classes outside the direct product 
normal subgroup (data to support this claim can be found in Section 11). For 
groups like these, the random search is likely to take a very long time. This makes 
it desirable not only to increase the normal subgroup as far as possible but also to 
develop another way to find the outside classes. 

With this aim, we will try to further investigate the structure of groups with a 
non-abelian normal subgroup to an extent that we can almost parametrize their 
classes. 

Our strategy will be as follows. We will determine a normal series of G with 
elementary factors: G = No > N, > ... > Nr = (1), Ni_/N Tdi Ti simple. 
Section 2 recalls how to do this. As in the case of solvable groups we then proceed 
down this series, determining the conjugacy classes of G/Ni from those of G/Ni_1. 
If Ni1I/Ni is abelian, this can be done in the same way as for solvable groups 
[15]. This paper is therefore concerned only with the case of a non-abelian factor 
Ni I/Ni. To attain our goal, we examine the extension theory of such factors more 
closely in Section 3, showing that these extensions can be built from subdirect 
products. Consequentially, Section 4 describes how to obtain the conjugacy classes 
of a subdirect product from the conjugacy classes of its factors. 

Section 5 then shows how to deal with component permutations, and Section 8 
shows how to obtain remaining conjugacy classes. Finally, in Section 10 we will 
briefly discuss implementational issues. A list of the symbols used ins the main 
sections (Sections 3 to 8) is provided at the end. 

1.1. Subdirect products. The decomposition of a group as subdirect product of 
two of its factor groups will be crucial to the procedure. The remainder of this 
section is therefore devoted to a short recall of its definition: 

Suppose the group G has two normal subgroups N and M with N n M = (1). 
This gives rise to two projections, a: G GC/N : A and 3: G - G/M =: B. 
It is easily checked that the mapping G A x B, g i-? (ga, g/3) is an injective 
homomorphism, and we can therefore embed G in the direct product of its factor 
groups A and B. If we embed G this way, a and 3 are the homomorphisms induced 
by the two component projections of A x B. 

Conversely, a subgroup G of A x B whose images under the component projec- 
tions a: A x B -- A and 3: A x B -- B are Ga = A and G03 = B has two normal 
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subgroups ker a and ker/3 which intersect trivially; the factor groups of those ker- 
nels are isomorphic to A and B. The factor group G/(A, B) maps to factors of 
both A and B; thus A and B have an isomorphic factor group. 

In this situation we say that G is an (inner) subdirect product of its factors A and 
B; we write G = A1 B. If A and B are given, a subdirect product is determined 
up to isomorphism by an isomorphism of factor groups of A and B, and any such 
isomorphism gives rise to a subdirect product: 

Definition 2. Let A and B be groups, and let D < A, E < B be such that 
there is an isomorphism X: A/D -- B/E. Denote the natural homomorphisms by 
3: A -- A/D and e: B B/E. The (outer) subdirect product of A and B induced 
by X is the subgroup 

{(a, b) E A x B I a(6X) = be} < A x B. 

(In the language of category theory, a subdirect product is the pull-back in the 
category of groups.) 

A natural generalization is an iterated subdirect product which corresponds to a 
subgroup of a direct product of more than two groups whose component projections 
are all surjective. This corresponds to a set of normal subgroups whose intersection 
is trivial. 

2. COMPUTING A CHIEF SERIES 

Given a permutation group G, we first have to obtain a normal series with 
elementary factors: let H < G be a normal subgroup and suppose that a normal 
series of G/H is known. (Initially, we know a normal series of GIG.) Using the 
methods for the computation of composition series [16, 14, 1], we obtain a subgroup 
U < H such that T:= H/U is simple. Let 

L:= n U; 
9EG 

then L < G (as intersection of a G-orbit) and L < H. Additionally H/L is an 
iterated subdirect product of groups isomorphic T; thus H/L is elementary of type 
T. We then proceed with L in place of H until the trivial subgroup is reached. 

It takes little further work to obtain a series of normal subgroups that cannot 
be refined any further. (Such a series is normally called a chief series.) To achieve 
this some normal factors H/L obtained so far might have to be refined. If H/L is 
elementary abelian this can be done using standard MeatAxe methods 117]. If H/L 
is not abelian, we claim that H/L is already a chief factor: 

Lemma 3. Let T be non-abelian simple and D = Td. Then every normal subgroup 
of D is a direct product of some of the d constituent copies of T. 

Proof. Let (1) 7& N < D be a nontrivial normal subgroup and 1 7& n E N. Consid- 
ering N as a direct product of d copies of T, we write n = (tl,... ,td). Without 
loss of generality (renumber the components) we can suppose that t, 7& 1. As T 
is simple non-abelian, there is an s E T such that t' 7& tl. Then the quotient (we 
write a/b as a shorthand for a b-1) 

n(Sl,. X 1 X)n = (t9/t1, t2/t2i td/td) = (t'l/tl, I.... 1) 

has to be contained in N. By further conjugation we get elements (r, 1, ... , 1) with 
r running through the T-class of til/tl 74 1. The subgroup of T generated by these 
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elements is a nontrivial normal subgroup of T; thus it has to be the whole of T. 
Accordingly, T1 < N 

Iterated application of this argument shows that any normal subgroup contains 
every one of the d direct factors isomorphic to T on which it projects non-trivially. 
Thus it has to be a direct product of those factors. El 

Lemma 4. The factor H/L is a chief factor. 

Proof. Applying Lemma 3 with D = H/L, we see that U/L has to be the direct 
product of all but one of the direct factors. The conjugates of U then are direct 
products of other (d - 1)-combinations of the direct factors. The conjugates form 
one orbit; thus G has to act transitively on the d factors. Thus any normal subgroup 
of G that contains one of these direct factors contains all. E 

An equivalent approach is mentioned in [13], constructing the series upwards 
instead of downwards. By modifying the composition series algorithm directly, 
instead of applying it as a subroutine, further improvements are possible [4]. 

3. EXTENSIONS WITH NON-ABELIAN ELEMENTARY KERNEL 

In the next sections we will describe how to compute the classes of G/Ni based 
on knowledge of the classes of G/Ni-1 in the case that Ni_1/N is elementary non- 
abelian. To simplify notation, however, we will (by proceeding to the factor group 
G/Ni) assume that Ni is trivial and that N = Ni-I/Ni is an elementary minimal 
normal subgroup. (The fact that we are computing in a factor group will not pose 
a problem for the actual calculations; see Remark 8.) 

Let G be a finite group with N < G, N T' for a non-abelian simple group 
T. Then we can write the elements of N as an n-component vector (t1,... tn) 
with ti E T. We consider the conjugation action o of G on N. Its kernel is the 
centralizer C = CG(N). The intersection of C and N consists of those elements 
of N that contain in every component an element of the centre Z(T). As T is 
non-abelian simple, Z(T) is trivial; thus Z(N) = C n N = (1). Figure 1 illustrates 
the situation. 

Accordingly, G can be considered as a subdirect product of the factor group 
G/N with the factor G/C. This factor is isomorphic to the image F :- GC of G 
under so, which is a subgroup of Aut(N). 

As seen in Lemma 3, every normal subgroup of N is the direct product of some 
of the n copies of T. Therefore these copies themselves form a class of normal sub- 
groups of N that is permuted by every automorphism. We denote this permutation 

G/N G so F b Fb 

(N, C) (1) 

(1) 

FIGURE 1. Structure of an extension with non-abelian kernel 
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action by ,6. An element of Aut(N) that fixes one component acts on this compo- 
nent like an element of Aut(T). The action of Aut(N) on N thus is composed from 
an Aut(T) action in the components and permutation of the components among 
each other. Conversely, every such composition forms an automorphism of N, so 

Aut(N) - Aut(T)- Sn. 

The base group of this wreath product is Aut(T)n , which in turn contains the 
elementary characteristic subgroup E := T. As N <G, we have in fact E < F = 

Gp < Aut(N). If N is a chief factor of C, by the same argument as in the proof of 
Lemma 4, the permutation image F4' is a transitive subgroup of Sn. 

Remark 5. If Out(T) = (1) we actually get F = T Z (Ffb). Otherwise, still, by the 
proof of Schreier's conjecture based on the classification of finite simple groups [10, 
Theorem 1.46] the index of Go in Aut(T) l (F4') will be fairly small, provided that 
n is not overly large. 

If we take a transitive permutation representation of T that extends to Aut(T), 
we get a transitive action of Aut(T) Sd on deg(T) .d points (the natural imprimitive 
action). In this action, the image Gp is a transitive subgroup of the wreath product, 
and its base group M := ker 4' is an iterated subdirect product of a group containing 
T and contained in Aut(T). (Groups of this type have been classified in [11].) 

Every extension of a factor F with a kernel isomorphic to Td thus is isomorphic 
to a subdirect product of F with a transitive imprimitive group of the described 
type. (One could also use the classification of those imprimitive groups together 
with a classification of subdirect products to get a classification of all extensions of 
a given factor group with elementary kernel of type T.) 

4. CONJUGACY CLASSES OF A SUBDIRECT PRODUCT 

The last section's analysis shows that subdirect products are building blocks of 
group extensions with non-abelian elementary kernel. Thus a description of their 
conjugacy classes is essential to describe the classes of extensions. In this section we 
consider a group M that is a subdirect product of its n projections M-ri =: Ai. We 
will use this procedure twice. The first time we will use it to compute the classes 
of the subgroup M = ker 0' < F. Here all the Ai are isomorphic to a subgroup 
A < Aut(T). As we want F-classes, however, we will eventually have to modify the 
procedure. This will be described in Section 5. 

The second use will be to compose the classes of G from the classes of G/N and 
F. In this situation n = 2 and the factor groups are usually not isomorphic. 

We consider the iterated subdirect product M as a subgroup of the direct product n 
D = x Ai. If the conjugacy classes of the Ai are known (this will be the case either 

i=1 
by induction or-when computing the classes of M < F-if the Ai are almost simple 
and so the classical random search quickly yields the classes), the classes of D are 
simply given by the Cartesian product of the sets of class representatives. 

We will first refine these classes to the M-conjugacy classes on D and then drop 
those representatives which are not contained in M. This obviously yields the 
conjugacy classes of M. In the cases considered here, even when M is the subdirect 
product of more than two constituents, the index of M in D is not overly large due 
to Remark 5. So this approach is feasible. 
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We concentrate first on dealing with M-conjugacy. Let g be an element of D. 
As M projects surjectively on A1, we can find ml- E M such that gmi7ri E A1 
is the fixed representative of its class. Keeping this image fixed restricts further 

conjugation to C: (CA1(gmi)iF1)7r), where the 'inverse 7r, denotes taking the 
full preimage. We then consider the image gm'17r2. By conjugation with m2 E Ci 
we can let (gmlm2)7r2 be a fixed representative of a C01r2-class in A2. Leaving 
the first two projections images fixed, further conjugation is restricted to C2 

-1 

CA2 (gMliM2l2) (712 IoC). We then proceed in a similar way for the other components, 
finally getting a "canonical" conjugate gm' . m- and its centralizer. 

So, we can build M-class representatives component by component in the form 
(rl, r2,... ,rd), where ri is a representative of a Ci Ci1-ir-class on Ai. These 
Ci-classes are refinements of the Ai-classes: if r is a representative of an Ai-class, 
representatives of the Ci-classes therein are given by rSj with s, running through a 
set of representatives of the double cosets CA. (r)\Ai/Cl. The appr'opriate central- 
izers of the form CcJ. (rga) can be obtained by intersecting the sj-conjugate of the 

centralizer of r with 0%. Taking the preimage under 7rilc_, then yields the next 
Ci. 

If we want classes within M we have to drop all representatives that are not 
contained in M (as M is closed under M-conjugation). Whenever we encounter a 
partial representative (ri,... ,ri) with i < n which is not contained in the image 
M(7ri, ... , 7ri) of M when projected to the first i components, we can discard this 
representative; all its descendants will not lie in M and it thus will not give rise to 
any valid representative of an M-class on M. 

This leads immediately to an algorithm that yields representatives of the M- 
classes on D. 

To reduce the number of centralizer preimages to consider (and thus also the 
number of double cosets to be computed) we further observe that M contains n 
normal subgroups that act on only one component, namely 

Li := ker7rj. 
jis 

They generate a direct product, the group L := (Li 1 < i < n). (In the situation 
of Section 3, we have for example Tn = E < L; thus L can be considered to be 
comparatively big.) 

We can conjugate with elements of L in one component without disturbing any 
of the other components. Thus in our above consideration, we can replace Ci by 
(Ci, L) without introducing conjugation 'that would change previously chosen class 
representatives within some already considered projection images. The immediate 
benefit of this is not only that (Ci, L) is often bigger than Ci and thus fewer double 
cosets arise (and the computation will proceed much faster), but also that actually 
many of the groups (Ci, L) for different Ci's will coincide. This greatly reduces 
the number of double coset computations needed. (In the extreme case of a direct 
product, (Ci, L)7ri+l will be equal to Ai+,. Thus the double cosets degenerate to 
simple cosets, and our procedure just enumerates the cartesian product of class 
representatives.) 

If we proceed in this way, of course we obtain (for example) a new C2 as C2 
-1 

CA2 (gn1n21r2) (1T2 I(C, ,L)). Thus the final stabilizer Cn is not the centralizer of the 
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representative, but the closure of the centralizer with L. But as computing images, 
preimages and double cosets in general is harder than computing centralizers, this 
loss of having to compute the centralizer separately is made up by the gain in the 
number of double coset computations needed. 

By taking closures with L, many of the centralizers will coincide. We may take 
advantage of this to reduce the number of double coset computations. 

The algorithm follows. 

Algorithm 6. (Classes of an iterated subdirect product based on classes of the 
constituents) Let M, n, Ai, 7ri, D and L be as defined previously. We denote the 
canonical embedding from Ai into D by Ei, so we have m = fli mrriri for all m E M. 

Let numberi be the number of classes and {ri,jI a set of class representatives of 
Ai. Let C,j := CA, (ri,j). This algorithm computes a set of representatives of the 
conjugacy classes of M. (We denote lists by square brackets.) 

1. [Initialization] Let reps := [1M]; centralizers := [M]; cent-index:= [1]. 
2. [Components loop] For i from 1 to n execute steps 3-17: 
3. [New component] Let -w := (n, ... ,ri); Mproj:= Mvc and Lloc:= L7ri. Let 

new-reps := []; new-cent:= []; new-centLindex:= []; cent-images:= 
cent-img-index []. 

4. [Fuse centralizers that become the same in Ai] For j from 1 to Icentralizersl 
execute step 5 

5. [Check whether two centralizers have the same image] Let 
C := centralizersj7ri. If C E cent-images then let p be its position, otherwise 
add C to cent-images and let p := I cent-imagesi. 
In both cases add p to cenLimg-index. 

6. [Consider all previous centralizers] For j from 1 to |cent-imagesl execute 
steps 7-16: 

7. [Determine all representatives belonging to this centralizer image] Let 
C:= cent-imagesj. Let select-cen := {k I cenLimg-indexk = j} be the set of 
all centralizer indices with the same (enlarged) centralizer image. For k from 
1 to numberi execute steps 8-16: 

8. [Double cosets] Let dc be a set of representatives of the double cosets 
Ci,k\Ai/C. For all t from select-cen execute steps 9-14: 

9. [Continue one partial representative] Let cen:= centralizerst. Let 
select:= {l cent-index1 = t} be the set of indices of those representatives 
whose partial centralizer is cen. 

Let 77 := ril(cen), new-cent-local:= [] and new-cent-locaLindex := []. For 
all d from dc execute for all s from select the steps 10-13: 

10. [New representative] Let elm:= reps, * ((rij)Ei). If elm , Mproj then go to 
step 13 as it may not lead to elements in M. 

11. [Compute new centralizer] Let newcen Crf n (Lloc, C2k). If 
newcen , new-cenLlocal then add newcen to new-cenLlocal and let 
p :new-cenLlocall. Otherwise let p be the position of newcen in 
new-cent-local. 

12. [Store the new element] Add elm to new-reps and add p to 
new-cenLlocaLindex. 

13. End the loops from step 9. 
14. [Centralizer preimages] Let shift:= []. For each 1 from 1 to Inew-cenLlocall 

let P be the preimage of new-centilocall under i7. If P , new-cent then add 
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P to new-cent and let shift, := Inew-centl. Otherwise assign the position of 
P in new-cent to shiftl. 

15. [Move local centralizer indices to global] For each 1 E new-cenLlocaLindex 
add shiftk to new-centLindex. 

16. End the loops from step 6,7 and 8. 
17. [End of component loop] Replace centralizers by new-cent, cent_index by 

new-cenLindex, and reps by new-reps. End the loop of step 2. 

When the algorithm terminates, the list reps contains representatives of the 
classes of M. 

Remark 7. Of course - as seen before - the centralizer of the representatives can 
be computed componentwise as well by keeping true centralizers Ci' besides the Ci. 

We note that in the case of a transitive action on the Ai the class representatives 
ri,j and centralizers Ci,j only need to be computed once. 

Remark 8. If M is a factor group of a larger group G (this happens when lifting the 
classes via subdirect products as described in Section 3) and if we don't yet have a 
faithful representation of M, we can instead of elements and subgroups of M work 
with their representatives, respectively full preimages in G. Tests for equality then 
must take place modulo the normal subgroup. 

Remark 9. For two components, the test elm E Mproj in step 10 also can be re- 
placed easily by checking whether (reps,)7ri and (rdik) both project correctly to the 
common factor group that determines the subdirect product. (For more compo- 
nents, subdirect products become too complicated for such a test.) 

Furthermore, the algorithm does not really compute in the first component, but 
just takes preimages of its classes/centralizers. 

5. FUSION UNDER COMPONENT PERMUTATION 

We now return to the situation of Section 3. Let F < Aut(T) S S,with M = 

ker b < F. We aim to describe the conjugacy classes of F. This will be done in 
two steps: first we will show how to obtain representatives of the F-classes on M. 
This will be explained in this section. 

In the second step (which will be carried out in Section 8) we will then describe 
how to get the remaining classes outside M. 

The F-classes of elements in M are of course unions of M-classes. We therefore 
could simply compute the M-classes first and then fuse them under the action of F. 
In many cases, however, a substantial fusion takes place; this approach would first 
compute many M-classes and then do much work fusing them to comparatively 
few F-classes. We will therefore modify Algorithm 6 to construct representatives 
of F-classes in the first place by taking care of the component permutation induced 
by F. 

We will suppose that we have obtained F by the action of G on a chief factor 
of G. So F acts transitively on the projections Ai of M, and therefore each Ai 
is isomorphic to a given group A < Aut(T). The action of F might further fuse 

-1 
classes of one Ai; this can be read off from the action of S := (StabFfp(1)) b on the 
classes of A1. 



CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1641 

Remark 10. If M is complemented in F (for example by the Schur-Zassenhaus 
theorem), no such fusion might take place, because the further action of F on M 
is a pure component permutation. 

To keep track of possible fusion, we now assign labels (which we call colours) to 
the classes of A, giving the same colour to classes if and only if they fuse under S. 
Furthermore we assign to every element of D a list of labels (which we call a colour 
bar) by listing the colours of the components classes: 

(a, I ... , an) + (ColourOfClass(al),... , ColourOfClass(an)). 

The permutation action of F will permute the colours in a bar while M stabilizes the 
bars. To obtain representatives of the F-classes on M it is thus sufficient to consider 
only such class representatives whose colour bars are from a set of representatives 
of the colour bars under the permuting action of P := FSb. This in turn allows us 
to weed out all the representatives obtained in Algorithm 6 whose colour bars are 
not representatives. 

We shall first consider the problem of computing representatives of the P-action 
on colour bars. In Section 7 we will then use the bar representatives to compute 
class representatives. 

6. ACTION ON COLOUR BARS 

We observe that we can parametrize colour bars by the number of colours con- 
tained, by the frequency of the colours occurring, and finally by the contained 
colours themselves. (For example for n = 5 one class might consist of the bars 
containing three different colours, the first colour three times, the other colours 
both once; the colours being red, green and blue.) This parameterization is well 
suited to component permutation, because we can first compute representatives by 
number and frequency of the colour and can fill the actual colours in afterwards in 
arbitrary combinations. 

If the acting group is the symmetric group this completely parameterizes the 
representatives, as we can sort each bar by "brightness" (i.e. an arbitrary total 
ordering) of the colours and the sorting permutation is contained in the symmetric 
group. 

To deduce P-representatives from this we observe that if c is a colour bar and 
S = Stabsn(c), all bars containing the same colours and the same frequencies are 
in bijection to the right cosets S\Sn, as they form just one Sn-class. (Note that S 
is just a direct product of symmetric groups.) The P-orbits are in correspondence 
with the double cosets S\Sn/P; we can obtain representatives by mapping c with a 
set of representatives for the double cosets. 

This leads to the following algorithm: 

Algorithm 11 (Representatives of colour bars). Let P be a permutation group 
on n points and colours a list of colours. This algorithm computes a set of 
representatives of the colour bars under the permuting action of P. 

1. [Initialization] Let allowedLcolourbars := []. 
2. [Loop over the number of different colours in the bar] For number from 1 to 

min(n, number) execute steps 3-6 (we construct bars with exactly number 
colours). 
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3. [Colour combinations] Let colour-comb be a set of the I nulmbr J 
number 

combinations of number entries from colours. For pattern running through a 
set of the ordered partitions of n with number cells execute steps 4-6 (the 
pattern indicates how often which colour will occur). 

4. [Compute pattern stabilizer and double cosets] Let 

expanded-pattern:= [1,... ,1,2,... ,2,... ,number,... ,number]. 

pattern, pattern2 patternnumber 

Let S be the stabilizer in Sn of expanded&pattern. (This is the stabilizer of 
all bars that arrange their colours according to this pattern. Its 
computation is trivial as it is just a direct product of symmetric groups.) 

Let reps be a set of representatives of the double cosets S\Sn/P. For each 
r E reps execute step 5: 

5. [Consider further permutations] Let permuted&pattern be the image of 
expanded-pattern under component permutation by r. For each comb from 
colour-comb add the bar 

[comb(permuted_patternJ),... , comb(permuted-patternn)] 

to allowed-colourbars. 
6. End the loops. 
At this point, allowed-colourbars is a set of representatives. 

We remark that in general n (and thus P) will be very small. Therefore this algo- 
rithm's runtime will be negligible in the overall cost and the potentially exponential 
algorithm need not be worried about. 

The stabilizers of the colour bars in P are obtainable in step 5 as Sr n P. 

Definition 12. We call those bars unlucky whose stabilizers are actually larger 
than M. 

7. REPRESENTATIVES OF THE INNER CLASSES 

In this section we will use the representatives of the colour bars to obtain repre- 
sentatives of the classes of M under F. 

We assume that we have computed the fusion of A-classes under the action of 
-1 

S (StabFVp (1)) gb and thus obtained a list of colours and assignment of colours 
to classes. We also assume knowledge of a set of representatives of the colour bars 
under action of P = F6b. 

When constructing representatives of F-classes, representative tuples from M 
with a colour bar not in the list of bar representatives may be discarded. (There 
is an image under F whose colour bar is in the list; we will also construct such 
a representative. As M fixes all bars, this does not interfere with any labelling 
scheme for M-representatives.) 

Thus in Algorithm 6 for each partial representative tuple (ri,... ,ri-1) only 
representatives of those classes need to be added in the i-th position, whose colour 
is equal to an i-th colour in a bar starting with Colourbar(rl,... ,ri1). Thus by 
attaching to each (partial) representative its (partial) colour bar we can simply 
restrict the number of representatives constructed while still covering all F-classes 
on M. The test for the permitted colours can take place in step 8 of Algorithm 6, 
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as at this point the colour bar of the image is already determined. We modify 
Algorithm 6 as follows: 

Algorithm 13 (Classes of a subdirect product under further component fusion). 
We assume that ColourOfClass gives the colour for a class and that the list 
allowedccolourbars is the result from Algorithm 11. Furthermore we will keep a 
list colourbar to give the (partial) colourbars of the representatives. 

3'. [New component] Let w: (= , ... ,ri); Mproj := Mvw and Lloc:= L7ri. Let 
new-reps:= []; new-cent:= []; new-cenLindex:= []; centLirnages:= 
cenLimg-index:= []. Let newucolourbar:= []. 

7'. [Determine all representatives belonging to this centralizer image] Let 
C := cent-imagesj. Let select-cen := {k I cent-img-indexk = j} be the set of 
all centralizer indices with the same (enlarged) centralizer image. Let 
select := {k I cent-indexk E selecLcen} be the set of indices of those 
representatives that might be extended here. 

7a. [Determine the addable colours] Let possible-colours:= { }. For k E select let 
bar:= colourbark. Let 

potentiaL bars:= {b E allowed&colourbars I b[1,=,i_] bar} 

and let 

possible-colours possible-colours U {bi I b E potentiaLbars}. 

7b. [Run through the classes with correct colours] For those k from 1 to number2 
whose colour is in possible-colours execute steps 8-16. 

9'. [Continue one partial representative] Let cen := centralizerst. Let 
select:= {Il cenLindex1 = t} be the set of indices of those representatives 
whose partial centralizer is cen. 

Let 77 := 7d(cen), new-cenLlocal:= [] and new-cent-locaLindex:= []. For 
all d from dc execute for all s from select the steps 9a-13: 

9a. [Test whether this colour may be added here] 
Let bar:= colourbar, U [ColourOfClass(k)]. 
If there is no bar c E allowedLcolourbars for which c[, i] = bar then go to 

step 13. 
12'. [Store the new element] Add elm to new-reps, bar to newucolourbar and add 

p to new-cenLlocaLindex. 
17'. [End of component loop] Replace centindex by new-cent_index, colourbar by 

new-colourbar, and reps by new-reps. End the loop of step 2. 

Finally, among the representatives obtained by the modified algorithm, some 
further fusion by F may take place, but only among those representatives with the 
same colour bars. Two representatives a, b E M with the same colour bar c that are 
conjugate in F must be conjugate already in StabF (c). So conjugacy tests actually 
only need to be performed among those representatives with unlucky colour bars. 
In this situation the conjugacy test takes place in StabF(c), which is often a smaller 
group than F: 

18. [Prepare for further F-fusion] Let new-reps []; For every bar E colourbar 
execute step 19 

19. [Fuse among classes with colour bar bar] Let cand be the set of those repre- 
sentatives in reps which have colour bar bar. Using conjugacy tests, compute 
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a set fuse of StabF(bar)-representatives among the elements in cand. Append 
fuse to new-reps. 

At the end of this loop new-reps contains representatives of the F-classes of 
elements in M. 

8. OBTAINING THE OUTER CLASSES 

We now can compute the F-classes of elements in M. What remains to be done 
is the classes of elements of F not contained in M, the outer classes. 

In contrast to the classes within M, F usually has very few outer classes (see 
the examples in Section 11). Some of these outer classes can be relatively small, 
however, and so a pure random search is not feasible. 

To obtain these outer classes, we recall the general idea of [15]: Let P := F/M, 
and 4: F -* P the natural homomorphism. Let r be the representative of a class 
of P. Then representatives of those classes of F that map under 4 into the class 

-1 
of r4 can be found as representatives of the Z (Cp(ro)) 4'-orbits on the coset 
rM. As for z e Z we have 

(rm)z = rzmZ = r[r, z]mZ 

with [Ir, z] e M, this induces an action on M by 

m-+ [r, z]mz. 

Here, in general, however, M is too big to pursue this actual action. 
As in Section 4, we will now first restrict the conjugating group acting on D 

from Z to M < Z. As we may embed F in Aut(T)? Sn, the action of M on M is a 
restriction of the action of M on D given by 

(14) d -* [r,m]dm. 

Let M = (mi1,... , mn) E M, d = (a,.... , an) e D, [r, m] =: ([r, m], , n), 
the cartesian decomposition. Then the action (14) becomes 

d -* [r, m]dm = ([r, m]1a7',... , [r, m]na'). 
This action thus is the composition of the action of the components Ai by 

(15) ai - [r,m]iaami. 

Now, to obtain representatives of the M-orbits on M under this action, we again 
proceed componentwise: we first compute the M-orbits on A1. Then for each 
representative r1 we compute the StabM(rl) orbits on A2, and so on. We thus 
obtain orbit representatives in the form (r, . . . , rn). As above, to obtain the orbits 
on M we have to discard those representatives that are not contained in M (as 
r normalizes M, the action (14) fixes M set-wise), and we can simply discard all 
partial representatives (ri,... ,ri) which are not contained in the projection image 
M(1,... i) 

As long as the size of the Ai is small we can simply run a standard orbit/stabilizer 
algorithm. For a large Ai (as in the example in the introduction for which Ai - 

S1l), however, this is not possible as we cannot store all elements. A standard 
technique in such cases is the use of tadpoles [7]. Let U be a subgroup of the 
acting group. Whenever elements are encountered a "standard" representative 
under action of U is computed (the iterative process usually used here gives rise 
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to the name "tadpole") and only this representative is stored. This permits us to 
reduce the number of elements to store roughly by JUI. 

In our situation we will take U to be a subgroup that centralizes r. (Any larger 
group would change r and thus leave the operations domain.) Then for U the 
action (15) reduces to a simple conjugation action, and we can take the "standard" 
U-representatives to be computed representatives of the U-classes on Ai. (Again, 
as above, these classes can be computed by conjugating class representatives a with 
representatives of the double cosets CA, (a)\Ai/U.) This permits us to compute the 
U-classes a priori and to simplify the orbit algorithm to fusion of the U-orbits. 
Section 9 explains how to proceed to obtain representatives of the M-orbits for 
these. 

To get the largest possible subgroup we take U in each step (when computing 
possible representatives in the (i + 1)-th component with entries ri,... ,ri in the 
prior components) to be the intersection of the centralizer CF(r) of r with the 
acting group StabM(1,r.. ., ri). Note that we have IMI choices for r. To minimize 
the number of U-orbits, we try to maximize CF(r), which is fulfilled if the order 
of r is minimal possible. Let o be the order of rb. Then we need ro = (9, which 
means that (r) intersects trivially with M. 

Lemma 16. For each cycle in the action of Mr on the components pick one compo- 
nent index. Let I be the set of these indices. If there is an m E M with m7ri = (r?)7ri 
for all i E I and mirj = () for all j 0 I, then r r/m is an element with r/ = rb 
and r?= () 

Proof. By considering the orbits on the components separately, we can assume 
without loss of generality that r acts transitively and I = {1}. Let j be a point 
from the first component. Then j(rt) (1 < o) is in a component on which m does 
act trivially. Accordingly 

-(P) j(rm-lr ....rm-l) = j(rO/m) = j 

by the definition of m, as j is in the first component. So r? acts trivially on the 
first component. As every point k is the image k = jQ'r) (1 < o) for a j in the first 
component, we have similarly 

k(rV) = (.(rt))(rO) = jVl+O) - (.(io))(Vl) = j(jP) = k 

and thus r? = (). O 

If no suitable element of M can be found, we simply select an r with a large 
centralizer. 

To continue in the next component we also need the stabilizer in U of the orbit 
representative (which will be the intersection of U with the stabilizer mentioned 
above). This stabilizer is simply (the full preimage of) the centralizer in U. 

Remark 17. If U is not normal in G and several orbits of U get fused, however, 
these centralizers can be of different sizes. Therefore we sort the orbits of U in 
ascending size and pick always the smallest one as representative for starting the 
G-orbit. This allows us to continue in the next component with as large a U as 
possible. 

Finally, we have to fuse the M-orbits to Z-orbits. As by Remark 5 [F: M] is 
small, also [Z: M] is small and thus not much fusion will take place. We also 
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observe that in general M is already quite big and has large orbits; thus only few 
classes have to be fused. Therefore this fusion test is done in a straightforward way 
by testing conjugacy of the elements obtained so far. (Obviously we can restrict 
this fusion test to elements with the same cycle structure and centralizer orders.) 

This finishes the description of the non-abelian lifting step which computes the 
classes of G, provided the classes of G/N are known. To summarize: Assigning 
F := G/CG(N), we first compute the F-classes of M. This is done by Algorithm 13 
and an additional fusion among representatives with the same unlucky colour bars. 
Afterwards we compute the F-classes outside M as in Section 8. Finally, we combine 
the classes of G/N and those of F = G/C to classes of G = (G/N)1-t F using 
Algorithm 6. We then proceed inductively for the next chief factor. 

9. AN ORBIT-FUSING ALGORITHM 

(This section uses its own notation to simplify variable names.) Let G be a 
(finite) group acting on Q via the operation ,t: Q x G -- Q. Furthermore let 
U < G and v :I= ,Iu be the restriction of the operation. We assume that we know 
representatives {wi} of the U-orbits on Q and their stabilizers, that we can find, for 
any a E Q, in which U-Orbit it lies, and that we can compute u E U with (U = wi 
for the suitable i. We want to obtain representatives and stabilizers of the G-orbits. 
As we already know the U-orbits, we use a slightly modified orbit algorithm that 
will always add a full U-orbit. However we want to avoid mapping all elements of 
Q with generators of G but try to restrict ourselves (as far as possible, impossible 
in general) to mapping only the wi: we store which U-orbits wu are contained in 
the G-orbit. If we have mapped all wi with all generators of G and the product of 
orbit length (the sum of the I w u) and stabilizer size is smaller than IGC, we did not 
yet reach the full orbit or full stabilizer. In this situation we start mapping other 
points wg' (u E U) until this condition is fulfilled. 

Algorithm 18. (Fuse U-orbits under the action of G > U) 

1. [Initialization] Let orb:= [w1], stab := Stabu(wi) and trans := [()], let 
iterate := false and pos := 1 

2. [Orbit loop] Let w := orb[pos]. For every generator gen of G execute steps 
3-7. 

3. [Pick up further elements to map] If iterate then let u be a random element 
of U and set gen:= u* gen. 

4. [Compute image and its canonical U-representative] Compute 
img:= ,u(w, gen). Let j be the index for which wj is in the U-orbit of img. 
Compute v E U with v(w1, v) = wj and let gen:= gen. v. Let 
transgen:= trans[pos] . gen. (Now transgen maps wi to wj.) 

5. [Did we extend the orbit?] If wj E orb then go to step 6. Otherwise add wj 
to orb and add transgen to trans. For each generator s of Stabu(wj) let 
stab:= (stab, transgen* s* transgen-1) Go to step 7. 

6. [Extend stabilizer] Assume that orb[i] = wj. Let 
stab := (stab, transgen . trans[i] -1) 

7. End the gen-loop of step 2 
8. [New orbit index] Increment pos. If pos > lorbl then set pos 1 and 

iterate:= true. 
9. [Test for full orbit/stabilizer] If Istabl . Zweorb lu| I IGI then go to step 2. 



CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1647 

When the algorithm terminates, orb contains those wi whose U-orbits form the 
G-orbit and stab = StabG(W1). Iterated application gives all G-orbits. 

Proof. Observe that the elements added in steps 5 and 6 all stabilize w1. By the 
orbit theorem the algorithm will terminate if we have found the full orbit and full 
stabilizer. By iterating we will finally (if the random function is really random) 
have mapped all orbit elements, so to show correctness it is sufficient to prove that 
the stabilizer generators added in step 6 finally will generate all Schreier generators 
of the stabilizer. 

This is seen easily if we define the transversal T (which gives rise to all these 
Schreier generators) based on the computed transversal trans. That is, every ele- 
ment of T is of the form tu with t E trans and u E U. The random element u in 
step 3 will finally give rise to all elements of T. 

Suppose that we map t u E T with the generator gen and that the transversal 
element for the image is t'u'. (We have t = trans[pos] and t' = trans[i].) This gives 
rise to the Schreier generator s := t u gen (u') 1(t')-1. On the other hand, the 
element v computed in step 4 will have t . u gen v mapping the representative to 
an image corresponding to the transversal element t'. In step 6 then we add the 
element s' t u gen . v (t')-1 to the stabilizer. As u'v E Stabu (wf) and thus 
v 1(u') s =1 si for suitable generators si of Stabu(wf), we have that 

= t. u. gen(V -1)(u')-1 (t')-1 = t. u. genrt v((t')1t )(v1 (u ))(t ) 

= (t u. genr v* (t')-1)t'(s . s1)(t')-l = 171 5t')1 

i=l1 

The 5it) have been added already in step 5. So we have finally s E stab, which 
is what had to be proved. O 

When picking the random element in step 3 it is sufficient to pick a u which is 
not in U n U(gen'), because otherwise u* gen = gen ii with ii E U and so the 
image will not lie in a different U-orbit. If no such elements exist, the generator 
can be ignored when iterating. 

Remark 19. As we know the size of the acting group and the orbit lengths, we 
may sometimes complete orbits without having computed all images: the length of 
the orbit must divide the order of the acting group. Suppose we have computed 
a partial orbit orb of length 1 = Ewjorb e Iw and stabilizer subgroup stab. If for 
the smallest divisor d of IGC which is not smaller than 1 (d = min{e C IGI I e > d}) 
we have that d Istabl = IGC, we know that stab is the stabilizer and that the full 
orbit is of length d. If there is only one possibility to add up the sizes of remaining 
U-orbits to obtain d - 1 these orbits have to be added to orb to obtain the full 
G-orbit. This can be particularly helpful if one small U-orbit is missing. 

Usually the algorithm will finish with none or very few iterations and terminate 
much quicker than when running through all U-images v(wi, u) in a more orderly 
way. 

If some of the U-orbits are small in average, it is relatively unlikely that they 
will be hit. Therefore it is preferable to pick w1 to be the representative with the 
smallest U-orbit. As a side effect, this permits one to start with the largest possible 
stabilizer and is consistent with the choice needed by Remark 17. 
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10. IMPLEMENTATIONAL ISSUES 

The whole algorithm now stands as described in the introduction. We compute 
a series of normal subgroups with elementary factors: G = No > N1 > >.. 

Nr = (1), and inductively compute the classes of G/Ni from those of G/Ni-1. For 
an abelian Nill/Ni the algorithm of [15] is used, and in the non-abelian case the 
method described in Sections 3 to 8 is used. 

10.1. Factor representations. The algorithm will require us to compute in factor 
groups. Following Remark 8, however, it is often not necessary to construct a 
concrete representation of the factor groups, but computation can proceed using 
coset representatives of full preimages of subgroups. 

For the factor groups for which we need to compute a representation, however, 
small faithful permutation representations can easily be found: 

The factor groups F = G,o are obtained in Section 3 by action on chief factors. 
As shown there, F can be embedded into Aut(T)? Sn. Using a faithful permutation 
representation for Aut(T) (such a representation is of relatively small degree, as 
T is simple non-abelian), we obtain a moderate degree permutation representation 
for the wreath product and thus for the factor F. 

We now consider the lifting situation of Section 3 (G being a subdirect product 
of G/N and F) with G being a factor group of a (probably larger) group H. We 
thus want to defer computations in G to computations in H. As we can find a 
good permutation representation for F, the full preimage of C = CG(N) in H is 
just the kernel of the homomorphism H -+ F, and is computable as such. We 
also may assume by induction that we already have class representatives and full 
preimages in H of the centralizers in G/N. Then (by Remark 8) we can use these 
preimages in Algorithm 6 and obtain representatives in X of class representatives 
for G. Similarly we obtain (preimages in H of) the centralizers in G by Remark 7 
from the centralizers in G/N and F. Furthermore we may assume F to be the 
second component of the subdirect product. Then by Remark 9 all computations 
for the algorithm will take place in F, which has a good permutation representation. 

This yields representatives for the classes and preimages of the centralizers, re- 
quired inductively if G becomes a G/N in the next step. 

For abelian chief factors, the methods from [15] mainly require us to compute 
the affine action on the vector space. This can be computed without a factor 
representation by identifying cosets. 

10.2. Choice of the normal series. The choice of the normal series can affect 
the algorithm's performance. In general the series should be chosen to have in 
each non-abelian step as small as possible a common factor group in the subdirect 
product of G/N with F. (The best case would be a direct product that is factor 
size 1, for which the classes are simply obtained as a cartesian product.) 

Conversely, it might happen (especially in the first steps of the algorithm) that 
C = 1 and thus G/N is isomorphic to a factor of F. In this situation, of course, the 
classes of G are just the classes of F and G/N, and the fusion step is discarded. 

1 1. EXAMPLES 

The described algorithm has been implemented by the author in GAP 4 [9]. We 
give some results of this experimental implementation in Table 1. All runtimes are 
seconds on a 200MHz Pentium Pro machine running under Linux. The nonstandard 
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TABLE 1. Results of conjugacy class computations 

Group Size deg C timestd time 
21+4+6 A8 (< C02) 21732 . 5 .7 240 111 287 122 
25+8.(A6 X S3) (< Fi22) 21733 * 5 106 1920 401 355 
[lS54JV4 l A6.V4 2153655 30 1591 1161 708 

2 [PGL2(9)3]S3(impr.) 2123753 30 218 86 139 
2 [PGL2(9)3]S3(prd.) 2123753 1000 218 194 180 
2[S]S-3 1 2[S5]S3 2173756 30 6115 2458 2 S32 

M12.2 lt. A6.V4 -l S9 21739537 11 43 2286 2396 1177 
C2 C2 

Column "deg" gives the degree of the permutation representation used, "C" gives the 
total number of classes, column "'timestd" is the runtime for the standard conjugacy 
class algorithm following [3, 20] as implemented in GAP 4, and column "time" the 
runtime for the author's implementation. A "-" indicates that the computation did not 
finish in three times the time used by the other algorithm. 

TABLE 2. Results for subgroups of wreath products 

Group F IFl deg [F:M] C Out part timestd time 

[2S1 ]2 216385472112 22 2 874 58 2.5 10-8 1061 363 

2 [S1]2 216385472112 22 2 868 54 1.3 .10-6 1026 944 

2 [S12]2 2203105472112 24 2 1600 74 1.3 10-7 4248 2914 
2 [A4.2] S4 2113554 20 24 118 68 3.6 10-5 66 70 

[(L7.2)3]S3 2123473 24 6 135 50 2.9 10-4 64 66 

[ S4]D(4) 2183854 24 8 1645 513 1.5 10-9 2282 1158 
A7 C4 214385474 28 4 1728 63 5.2. 10-8 1330 428 
1 [(L: 3)3]3 263453113 36 3 192 16 7.5. 10-4 37 25 
[PSL2(11)3 2]C3 273453113 36 3 228 26 3.7 10-4 49 80 

In addition to the data given in Table 1, column "Out" gives the number of classes 
outside M, and "part" the ratio of the smallest outer class within all outer classes. 

names refer to constructions as explained in [6]. If solvable normal subgroups exist, 
the use of homomorphic images always improves the performance. Thc table gives 
only one example of this kind, as the behaviour of other such groups does not vary 
much from the given one and as the method used has been well-known for a couple 
of years; extensive runtime studies are given in [5]. Therefore all other examples 
selected do not have a solvable normal subgroup. 

The group [PGL2 (9)3]S3 is the same group isomorphism type given in two 
different permutation representations (imprimitive and product action). While the 
standard algorithm depends substantially on the degree of the representation, the 
new algorithm (which performs all hard calculations in the factor group F for which 
a small degree permutation representation is computed) is fairly independent of it. 

The building blocks of the new part of the algorithm are the subgroups of wreath 
products, described as F in Section 3. We list a few extra results for a random 
selection of them in Table 2. Observe that, as promised, the number of outer classes 
usually is small compared with the total number of classes, but some classes are very 
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small, so a random search for outer classes as proposed in [5] will not necessarily 
work. We also see that these groups usually have very many classes in total, so 
even a modified random search along the lines of [12] is therefore not suitable. 

A notable exception among the otherwise satisfactory runtimes is 1[S21]2, for 
which the new algorithm yields only a minimal improvement. In this group (the 
wreath product S11 2 has 3 normal subgroups of index 2 namely [ S21]2, 2 [S21]2 
and Sf1; see [6] for explanation of the names) the block action C2 is not "bodily", 
that is, the group does not split over its normal subgroup S21.2. Consequently, the 
centralizer CF(r) is relatively small and thus has many small orbits which are hard 
to fuse. However the loss in comparison to the standard algorithm is only due to 
the small size, as the similarly built 2 [S2] 2 shows. 

In general, we deduce from comparison with the standard algorithm that the 
group must be large enough to make the new algorithm worth using; otherwise the 
setup of the series and the subdirect products takes too long. 

On the other hand, the algorithm is capable of dealing with groups which the 
standard algorithm is incapable of, and may become useful in these cases. 

12. CLOSING REMARKS 

The algorithm presented in this note does not rely on G being a permutation 
group. All parts of the calculations which depend on the representation are kept in 
routines called (mainly: composition series, Double cosets and Homomorphisms). 
As soon as such routines are provided for other types of group representations, the 
algorithm becomes available there. 

The parametrization of classes used here may also be used to run through the 
classes of a large group without storing all class representatives at once. 

The author would like to thank Steve Linton for helpful comments on a first 
draft. 

13. LIST OF SYMBOLS 

Ai constituent groups of M n T- "dimension" of N 
C CG(N) P F/M_FO 
C0 pre-image in M of centralizer in r representative in F of P-class 

Mwj S component stabilizer 
n -1 

D direct product x Ai (StabFf,(1)) 
d element of D T simple group, N T 
E image N(o < F U subgroup that centralizes r 
F Gp - G/C Z full centralizer preimage 
C Group for which we want to (Cp(r -1)) 

compute the conjugacy classes C : F, action of C on N 
Li= ni i ker 7ri < M, subgroup -i : M - Ai, component projection 

acting on one component only wi = (7r1,... ., 7r), projection on first 
L = (Li) i components 
M subdirect product, for example : F - P, action on the 

ker , components of N. 
m element of M -1 
N elementary (minimal) normal 0 full preimage under , 

subgroup of G 
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