
MATHEMATICS OF COMPUTATION
Volume 69, Number 232, Pages 1633-1651
S 0025-5718(99)01157-6
Article electronically published on May 24, 1999

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS
VIA HOMOMORPHIC IMAGES

ALEXANDER HULPKE

ABSTRACT. The lifting of results from factor groups to the full group is a
standard technique for solvable groups. This paper shows how to utilize this
approach in the case of non-solvable normal subgroups to compute the conju-
gacy classes of a finite group.

1. INTRODUCTION

The determination of all conjugacy classes of a finite permutation group G has
already been the subject of several studies [18, 2, 3, 5]. A first approach is to check
random group elements for conjugacy until representatives for all conjugacy classes
have been found. Despite the simplicity this approach works quite effectively if there
are few and large conjugacy classes, for example if the group is almost simple. As
soon as there are small conjugacy classes, however, the algorithm will not finish
in reasonable time, because representatives from these classes will not be found.
Thus one of the main objectives of any better conjugacy class algorithm has to
be the creation of a list of group elements of sufficiently small size which contains
representatives for all classes.

The inductive approach [3] considers elements as roots of their prime-order pow-
ers. Thus every element can be found in the centralizer of a p-element. These ele-
ments themselves will be found in the Sylow subgroups, which are usually smaller
than the group and for which effective methods for the determination of conjugacy
classes are known [8].

In some cases, however the sheer size of p-element centralizers and the number of
rational classes in a Sylow subgroup may render this approach unusable. A typical
example is the group

[IS21]2 = ((1,2,3),(1,2,3,4,5,6,7,8,9,10,11),(1,2)(12,13)

(1,12) (2,13) (3,14) (4,15) (5,16) (6,17) (7, 18) (8, 19) (9, 20) (10, 21) (11, 22))

of degree 22. In this group, for example, the element (1, 2, 3) has a centralizer of
size 21437537211 and the 2-Sylow subgroup has 460 classes which fuse to only 70
classes of 2-elements in the full group.

Received by the editor November 17, 1997 and, in revised form, November 17, 1998.
1991 Mathematics Subject Classification. Primary 20-04, 20B40, 68Q40.
Key words and phrases. Conjugacy classes, permutation group, algorithm.
Supported by EPSRC Grant GL/L21013.

(?)2000 American Mathematical Society

1633

1634 ALEXANDER HULPKE

Definition 1. A group H which is the direct product of simple groups of the same
type, H _ T x ... x T (T simple), is called elementary. If T (and H) are abelian,
H is called elementary abelian.

If G possesses an elementary abelian normal subgroup N, the problem can be
reduced substantially: provided the classes of G/N are known, the classes of G can
be lifted from these by an affine action on N. This leads to an efficient algorithm to
determine all conjugacy classes of solvable groups given by PC presentations [15].
As a PC presentation can be computed easily for solvable permutation groups [19],
we will only have to consider non-solvable permutation groups further on.

In fact, the affine method from [15] does not require the factor group to be
solvable, and so we can in principle even restrict to groups with no solvable normal
subgroup. In [5] it is shown that groups of this type have a large normal subgroup
that is a direct product. In [5], the authors then suggest parametrizing the classes in
this normal subgroup and using a random search outside. Again, however, groups
like [IS21]2 tend to possess some very small classes outside the direct product
normal subgroup (data to support this claim can be found in Section 11). For
groups like these, the random search is likely to take a very long time. This makes
it desirable not only to increase the normal subgroup as far as possible but also to
develop another way to find the outside classes.

With this aim, we will try to further investigate the structure of groups with a
non-abelian normal subgroup to an extent that we can almost parametrize their
classes.

Our strategy will be as follows. We will determine a normal series of G with
elementary factors: G = No > N, > ... > Nr = (1), Ni_/N Tdi Ti simple.
Section 2 recalls how to do this. As in the case of solvable groups we then proceed
down this series, determining the conjugacy classes of G/Ni from those of G/Ni_1.
If Ni1I/Ni is abelian, this can be done in the same way as for solvable groups
[15]. This paper is therefore concerned only with the case of a non-abelian factor
Ni I/Ni. To attain our goal, we examine the extension theory of such factors more
closely in Section 3, showing that these extensions can be built from subdirect
products. Consequentially, Section 4 describes how to obtain the conjugacy classes
of a subdirect product from the conjugacy classes of its factors.

Section 5 then shows how to deal with component permutations, and Section 8
shows how to obtain remaining conjugacy classes. Finally, in Section 10 we will
briefly discuss implementational issues. A list of the symbols used ins the main
sections (Sections 3 to 8) is provided at the end.

1.1. Subdirect products. The decomposition of a group as subdirect product of
two of its factor groups will be crucial to the procedure. The remainder of this
section is therefore devoted to a short recall of its definition:

Suppose the group G has two normal subgroups N and M with N n M = (1).
This gives rise to two projections, a: G GC/N : A and 3: G - G/M =: B.
It is easily checked that the mapping G A x B, g i-? (ga, g/3) is an injective
homomorphism, and we can therefore embed G in the direct product of its factor
groups A and B. If we embed G this way, a and 3 are the homomorphisms induced
by the two component projections of A x B.

Conversely, a subgroup G of A x B whose images under the component projec-
tions a: A x B -- A and 3: A x B -- B are Ga = A and G03 = B has two normal

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1635

subgroups ker a and ker/3 which intersect trivially; the factor groups of those ker-
nels are isomorphic to A and B. The factor group G/(A, B) maps to factors of
both A and B; thus A and B have an isomorphic factor group.

In this situation we say that G is an (inner) subdirect product of its factors A and
B; we write G = A1 B. If A and B are given, a subdirect product is determined
up to isomorphism by an isomorphism of factor groups of A and B, and any such
isomorphism gives rise to a subdirect product:

Definition 2. Let A and B be groups, and let D < A, E < B be such that
there is an isomorphism X: A/D -- B/E. Denote the natural homomorphisms by
3: A -- A/D and e: B B/E. The (outer) subdirect product of A and B induced
by X is the subgroup

{(a, b) E A x B I a(6X) = be} < A x B.

(In the language of category theory, a subdirect product is the pull-back in the
category of groups.)

A natural generalization is an iterated subdirect product which corresponds to a
subgroup of a direct product of more than two groups whose component projections
are all surjective. This corresponds to a set of normal subgroups whose intersection
is trivial.

2. COMPUTING A CHIEF SERIES

Given a permutation group G, we first have to obtain a normal series with
elementary factors: let H < G be a normal subgroup and suppose that a normal
series of G/H is known. (Initially, we know a normal series of GIG.) Using the
methods for the computation of composition series [16, 14, 1], we obtain a subgroup
U < H such that T:= H/U is simple. Let

L:= n U;
9EG

then L < G (as intersection of a G-orbit) and L < H. Additionally H/L is an
iterated subdirect product of groups isomorphic T; thus H/L is elementary of type
T. We then proceed with L in place of H until the trivial subgroup is reached.

It takes little further work to obtain a series of normal subgroups that cannot
be refined any further. (Such a series is normally called a chief series.) To achieve
this some normal factors H/L obtained so far might have to be refined. If H/L is
elementary abelian this can be done using standard MeatAxe methods 117]. If H/L
is not abelian, we claim that H/L is already a chief factor:

Lemma 3. Let T be non-abelian simple and D = Td. Then every normal subgroup
of D is a direct product of some of the d constituent copies of T.

Proof. Let (1) 7& N < D be a nontrivial normal subgroup and 1 7& n E N. Consid-
ering N as a direct product of d copies of T, we write n = (tl,... ,td). Without
loss of generality (renumber the components) we can suppose that t, 7& 1. As T
is simple non-abelian, there is an s E T such that t' 7& tl. Then the quotient (we
write a/b as a shorthand for a b-1)

n(Sl,. X 1 X)n = (t9/t1, t2/t2i td/td) = (t'l/tl, I.... 1)

has to be contained in N. By further conjugation we get elements (r, 1, ... , 1) with
r running through the T-class of til/tl 74 1. The subgroup of T generated by these

1636 ALEXANDER HULPKE

elements is a nontrivial normal subgroup of T; thus it has to be the whole of T.
Accordingly, T1 < N

Iterated application of this argument shows that any normal subgroup contains
every one of the d direct factors isomorphic to T on which it projects non-trivially.
Thus it has to be a direct product of those factors. El

Lemma 4. The factor H/L is a chief factor.

Proof. Applying Lemma 3 with D = H/L, we see that U/L has to be the direct
product of all but one of the direct factors. The conjugates of U then are direct
products of other (d - 1)-combinations of the direct factors. The conjugates form
one orbit; thus G has to act transitively on the d factors. Thus any normal subgroup
of G that contains one of these direct factors contains all. E

An equivalent approach is mentioned in [13], constructing the series upwards
instead of downwards. By modifying the composition series algorithm directly,
instead of applying it as a subroutine, further improvements are possible [4].

3. EXTENSIONS WITH NON-ABELIAN ELEMENTARY KERNEL

In the next sections we will describe how to compute the classes of G/Ni based
on knowledge of the classes of G/Ni-1 in the case that Ni_1/N is elementary non-
abelian. To simplify notation, however, we will (by proceeding to the factor group
G/Ni) assume that Ni is trivial and that N = Ni-I/Ni is an elementary minimal
normal subgroup. (The fact that we are computing in a factor group will not pose
a problem for the actual calculations; see Remark 8.)

Let G be a finite group with N < G, N T' for a non-abelian simple group
T. Then we can write the elements of N as an n-component vector (t1,... tn)
with ti E T. We consider the conjugation action o of G on N. Its kernel is the
centralizer C = CG(N). The intersection of C and N consists of those elements
of N that contain in every component an element of the centre Z(T). As T is
non-abelian simple, Z(T) is trivial; thus Z(N) = C n N = (1). Figure 1 illustrates
the situation.

Accordingly, G can be considered as a subdirect product of the factor group
G/N with the factor G/C. This factor is isomorphic to the image F :- GC of G
under so, which is a subgroup of Aut(N).

As seen in Lemma 3, every normal subgroup of N is the direct product of some
of the n copies of T. Therefore these copies themselves form a class of normal sub-
groups of N that is permuted by every automorphism. We denote this permutation

G/N G so F b Fb

(N, C) (1)

(1)

FIGURE 1. Structure of an extension with non-abelian kernel

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1637

action by ,6. An element of Aut(N) that fixes one component acts on this compo-
nent like an element of Aut(T). The action of Aut(N) on N thus is composed from
an Aut(T) action in the components and permutation of the components among
each other. Conversely, every such composition forms an automorphism of N, so

Aut(N) - Aut(T)- Sn.

The base group of this wreath product is Aut(T)n , which in turn contains the
elementary characteristic subgroup E := T. As N <G, we have in fact E < F =

Gp < Aut(N). If N is a chief factor of C, by the same argument as in the proof of
Lemma 4, the permutation image F4' is a transitive subgroup of Sn.

Remark 5. If Out(T) = (1) we actually get F = T Z (Ffb). Otherwise, still, by the
proof of Schreier's conjecture based on the classification of finite simple groups [10,
Theorem 1.46] the index of Go in Aut(T) l (F4') will be fairly small, provided that
n is not overly large.

If we take a transitive permutation representation of T that extends to Aut(T),
we get a transitive action of Aut(T) Sd on deg(T) .d points (the natural imprimitive
action). In this action, the image Gp is a transitive subgroup of the wreath product,
and its base group M := ker 4' is an iterated subdirect product of a group containing
T and contained in Aut(T). (Groups of this type have been classified in [11].)

Every extension of a factor F with a kernel isomorphic to Td thus is isomorphic
to a subdirect product of F with a transitive imprimitive group of the described
type. (One could also use the classification of those imprimitive groups together
with a classification of subdirect products to get a classification of all extensions of
a given factor group with elementary kernel of type T.)

4. CONJUGACY CLASSES OF A SUBDIRECT PRODUCT

The last section's analysis shows that subdirect products are building blocks of
group extensions with non-abelian elementary kernel. Thus a description of their
conjugacy classes is essential to describe the classes of extensions. In this section we
consider a group M that is a subdirect product of its n projections M-ri =: Ai. We
will use this procedure twice. The first time we will use it to compute the classes
of the subgroup M = ker 0' < F. Here all the Ai are isomorphic to a subgroup
A < Aut(T). As we want F-classes, however, we will eventually have to modify the
procedure. This will be described in Section 5.

The second use will be to compose the classes of G from the classes of G/N and
F. In this situation n = 2 and the factor groups are usually not isomorphic.

We consider the iterated subdirect product M as a subgroup of the direct product n
D = x Ai. If the conjugacy classes of the Ai are known (this will be the case either

i=1
by induction or-when computing the classes of M < F-if the Ai are almost simple
and so the classical random search quickly yields the classes), the classes of D are
simply given by the Cartesian product of the sets of class representatives.

We will first refine these classes to the M-conjugacy classes on D and then drop
those representatives which are not contained in M. This obviously yields the
conjugacy classes of M. In the cases considered here, even when M is the subdirect
product of more than two constituents, the index of M in D is not overly large due
to Remark 5. So this approach is feasible.

1638 ALEXANDER HULPKE

We concentrate first on dealing with M-conjugacy. Let g be an element of D.
As M projects surjectively on A1, we can find ml- E M such that gmi7ri E A1
is the fixed representative of its class. Keeping this image fixed restricts further

conjugation to C: (CA1(gmi)iF1)7r), where the 'inverse 7r, denotes taking the
full preimage. We then consider the image gm'17r2. By conjugation with m2 E Ci
we can let (gmlm2)7r2 be a fixed representative of a C01r2-class in A2. Leaving
the first two projections images fixed, further conjugation is restricted to C2

-1

CA2 (gMliM2l2) (712 IoC). We then proceed in a similar way for the other components,
finally getting a "canonical" conjugate gm' . m- and its centralizer.

So, we can build M-class representatives component by component in the form
(rl, r2,... ,rd), where ri is a representative of a Ci Ci1-ir-class on Ai. These
Ci-classes are refinements of the Ai-classes: if r is a representative of an Ai-class,
representatives of the Ci-classes therein are given by rSj with s, running through a
set of representatives of the double cosets CA. (r)\Ai/Cl. The appr'opriate central-
izers of the form CcJ. (rga) can be obtained by intersecting the sj-conjugate of the

centralizer of r with 0%. Taking the preimage under 7rilc_, then yields the next
Ci.

If we want classes within M we have to drop all representatives that are not
contained in M (as M is closed under M-conjugation). Whenever we encounter a
partial representative (ri,... ,ri) with i < n which is not contained in the image
M(7ri, ... , 7ri) of M when projected to the first i components, we can discard this
representative; all its descendants will not lie in M and it thus will not give rise to
any valid representative of an M-class on M.

This leads immediately to an algorithm that yields representatives of the M-
classes on D.

To reduce the number of centralizer preimages to consider (and thus also the
number of double cosets to be computed) we further observe that M contains n
normal subgroups that act on only one component, namely

Li := ker7rj.
jis

They generate a direct product, the group L := (Li 1 < i < n). (In the situation
of Section 3, we have for example Tn = E < L; thus L can be considered to be
comparatively big.)

We can conjugate with elements of L in one component without disturbing any
of the other components. Thus in our above consideration, we can replace Ci by
(Ci, L) without introducing conjugation 'that would change previously chosen class
representatives within some already considered projection images. The immediate
benefit of this is not only that (Ci, L) is often bigger than Ci and thus fewer double
cosets arise (and the computation will proceed much faster), but also that actually
many of the groups (Ci, L) for different Ci's will coincide. This greatly reduces
the number of double coset computations needed. (In the extreme case of a direct
product, (Ci, L)7ri+l will be equal to Ai+,. Thus the double cosets degenerate to
simple cosets, and our procedure just enumerates the cartesian product of class
representatives.)

If we proceed in this way, of course we obtain (for example) a new C2 as C2
-1

CA2 (gn1n21r2) (1T2 I(C, ,L)). Thus the final stabilizer Cn is not the centralizer of the

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1639

representative, but the closure of the centralizer with L. But as computing images,
preimages and double cosets in general is harder than computing centralizers, this
loss of having to compute the centralizer separately is made up by the gain in the
number of double coset computations needed.

By taking closures with L, many of the centralizers will coincide. We may take
advantage of this to reduce the number of double coset computations.

The algorithm follows.

Algorithm 6. (Classes of an iterated subdirect product based on classes of the
constituents) Let M, n, Ai, 7ri, D and L be as defined previously. We denote the
canonical embedding from Ai into D by Ei, so we have m = fli mrriri for all m E M.

Let numberi be the number of classes and {ri,jI a set of class representatives of
Ai. Let C,j := CA, (ri,j). This algorithm computes a set of representatives of the
conjugacy classes of M. (We denote lists by square brackets.)

1. [Initialization] Let reps := [1M]; centralizers := [M]; cent-index:= [1].
2. [Components loop] For i from 1 to n execute steps 3-17:
3. [New component] Let -w := (n, ... ,ri); Mproj:= Mvc and Lloc:= L7ri. Let

new-reps := []; new-cent:= []; new-centLindex:= []; cent-images:=
cent-img-index [].

4. [Fuse centralizers that become the same in Ai] For j from 1 to Icentralizersl
execute step 5

5. [Check whether two centralizers have the same image] Let
C := centralizersj7ri. If C E cent-images then let p be its position, otherwise
add C to cent-images and let p := I cent-imagesi.
In both cases add p to cenLimg-index.

6. [Consider all previous centralizers] For j from 1 to |cent-imagesl execute
steps 7-16:

7. [Determine all representatives belonging to this centralizer image] Let
C:= cent-imagesj. Let select-cen := {k I cenLimg-indexk = j} be the set of
all centralizer indices with the same (enlarged) centralizer image. For k from
1 to numberi execute steps 8-16:

8. [Double cosets] Let dc be a set of representatives of the double cosets
Ci,k\Ai/C. For all t from select-cen execute steps 9-14:

9. [Continue one partial representative] Let cen:= centralizerst. Let
select:= {l cent-index1 = t} be the set of indices of those representatives
whose partial centralizer is cen.

Let 77 := ril(cen), new-cent-local:= [] and new-cent-locaLindex := []. For
all d from dc execute for all s from select the steps 10-13:

10. [New representative] Let elm:= reps, * ((rij)Ei). If elm , Mproj then go to
step 13 as it may not lead to elements in M.

11. [Compute new centralizer] Let newcen Crf n (Lloc, C2k). If
newcen , new-cenLlocal then add newcen to new-cenLlocal and let
p :new-cenLlocall. Otherwise let p be the position of newcen in
new-cent-local.

12. [Store the new element] Add elm to new-reps and add p to
new-cenLlocaLindex.

13. End the loops from step 9.
14. [Centralizer preimages] Let shift:= []. For each 1 from 1 to Inew-cenLlocall

let P be the preimage of new-centilocall under i7. If P , new-cent then add

1640 ALEXANDER HULPKE

P to new-cent and let shift, := Inew-centl. Otherwise assign the position of
P in new-cent to shiftl.

15. [Move local centralizer indices to global] For each 1 E new-cenLlocaLindex
add shiftk to new-centLindex.

16. End the loops from step 6,7 and 8.
17. [End of component loop] Replace centralizers by new-cent, cent_index by

new-cenLindex, and reps by new-reps. End the loop of step 2.

When the algorithm terminates, the list reps contains representatives of the
classes of M.

Remark 7. Of course - as seen before - the centralizer of the representatives can
be computed componentwise as well by keeping true centralizers Ci' besides the Ci.

We note that in the case of a transitive action on the Ai the class representatives
ri,j and centralizers Ci,j only need to be computed once.

Remark 8. If M is a factor group of a larger group G (this happens when lifting the
classes via subdirect products as described in Section 3) and if we don't yet have a
faithful representation of M, we can instead of elements and subgroups of M work
with their representatives, respectively full preimages in G. Tests for equality then
must take place modulo the normal subgroup.

Remark 9. For two components, the test elm E Mproj in step 10 also can be re-
placed easily by checking whether (reps,)7ri and (rdik) both project correctly to the
common factor group that determines the subdirect product. (For more compo-
nents, subdirect products become too complicated for such a test.)

Furthermore, the algorithm does not really compute in the first component, but
just takes preimages of its classes/centralizers.

5. FUSION UNDER COMPONENT PERMUTATION

We now return to the situation of Section 3. Let F < Aut(T) S S,with M =

ker b < F. We aim to describe the conjugacy classes of F. This will be done in
two steps: first we will show how to obtain representatives of the F-classes on M.
This will be explained in this section.

In the second step (which will be carried out in Section 8) we will then describe
how to get the remaining classes outside M.

The F-classes of elements in M are of course unions of M-classes. We therefore
could simply compute the M-classes first and then fuse them under the action of F.
In many cases, however, a substantial fusion takes place; this approach would first
compute many M-classes and then do much work fusing them to comparatively
few F-classes. We will therefore modify Algorithm 6 to construct representatives
of F-classes in the first place by taking care of the component permutation induced
by F.

We will suppose that we have obtained F by the action of G on a chief factor
of G. So F acts transitively on the projections Ai of M, and therefore each Ai
is isomorphic to a given group A < Aut(T). The action of F might further fuse

-1
classes of one Ai; this can be read off from the action of S := (StabFfp(1)) b on the
classes of A1.

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1641

Remark 10. If M is complemented in F (for example by the Schur-Zassenhaus
theorem), no such fusion might take place, because the further action of F on M
is a pure component permutation.

To keep track of possible fusion, we now assign labels (which we call colours) to
the classes of A, giving the same colour to classes if and only if they fuse under S.
Furthermore we assign to every element of D a list of labels (which we call a colour
bar) by listing the colours of the components classes:

(a, I ... , an) + (ColourOfClass(al),... , ColourOfClass(an)).

The permutation action of F will permute the colours in a bar while M stabilizes the
bars. To obtain representatives of the F-classes on M it is thus sufficient to consider
only such class representatives whose colour bars are from a set of representatives
of the colour bars under the permuting action of P := FSb. This in turn allows us
to weed out all the representatives obtained in Algorithm 6 whose colour bars are
not representatives.

We shall first consider the problem of computing representatives of the P-action
on colour bars. In Section 7 we will then use the bar representatives to compute
class representatives.

6. ACTION ON COLOUR BARS

We observe that we can parametrize colour bars by the number of colours con-
tained, by the frequency of the colours occurring, and finally by the contained
colours themselves. (For example for n = 5 one class might consist of the bars
containing three different colours, the first colour three times, the other colours
both once; the colours being red, green and blue.) This parameterization is well
suited to component permutation, because we can first compute representatives by
number and frequency of the colour and can fill the actual colours in afterwards in
arbitrary combinations.

If the acting group is the symmetric group this completely parameterizes the
representatives, as we can sort each bar by "brightness" (i.e. an arbitrary total
ordering) of the colours and the sorting permutation is contained in the symmetric
group.

To deduce P-representatives from this we observe that if c is a colour bar and
S = Stabsn(c), all bars containing the same colours and the same frequencies are
in bijection to the right cosets S\Sn, as they form just one Sn-class. (Note that S
is just a direct product of symmetric groups.) The P-orbits are in correspondence
with the double cosets S\Sn/P; we can obtain representatives by mapping c with a
set of representatives for the double cosets.

This leads to the following algorithm:

Algorithm 11 (Representatives of colour bars). Let P be a permutation group
on n points and colours a list of colours. This algorithm computes a set of
representatives of the colour bars under the permuting action of P.

1. [Initialization] Let allowedLcolourbars := [].
2. [Loop over the number of different colours in the bar] For number from 1 to

min(n, number) execute steps 3-6 (we construct bars with exactly number
colours).

1642 ALEXANDER HULPKE

3. [Colour combinations] Let colour-comb be a set of the I nulmbr J
number

combinations of number entries from colours. For pattern running through a
set of the ordered partitions of n with number cells execute steps 4-6 (the
pattern indicates how often which colour will occur).

4. [Compute pattern stabilizer and double cosets] Let

expanded-pattern:= [1,... ,1,2,... ,2,... ,number,... ,number].

pattern, pattern2 patternnumber

Let S be the stabilizer in Sn of expanded&pattern. (This is the stabilizer of
all bars that arrange their colours according to this pattern. Its
computation is trivial as it is just a direct product of symmetric groups.)

Let reps be a set of representatives of the double cosets S\Sn/P. For each
r E reps execute step 5:

5. [Consider further permutations] Let permuted&pattern be the image of
expanded-pattern under component permutation by r. For each comb from
colour-comb add the bar

[comb(permuted_patternJ),... , comb(permuted-patternn)]

to allowed-colourbars.
6. End the loops.
At this point, allowed-colourbars is a set of representatives.

We remark that in general n (and thus P) will be very small. Therefore this algo-
rithm's runtime will be negligible in the overall cost and the potentially exponential
algorithm need not be worried about.

The stabilizers of the colour bars in P are obtainable in step 5 as Sr n P.

Definition 12. We call those bars unlucky whose stabilizers are actually larger
than M.

7. REPRESENTATIVES OF THE INNER CLASSES

In this section we will use the representatives of the colour bars to obtain repre-
sentatives of the classes of M under F.

We assume that we have computed the fusion of A-classes under the action of
-1

S (StabFVp (1)) gb and thus obtained a list of colours and assignment of colours
to classes. We also assume knowledge of a set of representatives of the colour bars
under action of P = F6b.

When constructing representatives of F-classes, representative tuples from M
with a colour bar not in the list of bar representatives may be discarded. (There
is an image under F whose colour bar is in the list; we will also construct such
a representative. As M fixes all bars, this does not interfere with any labelling
scheme for M-representatives.)

Thus in Algorithm 6 for each partial representative tuple (ri,... ,ri-1) only
representatives of those classes need to be added in the i-th position, whose colour
is equal to an i-th colour in a bar starting with Colourbar(rl,... ,ri1). Thus by
attaching to each (partial) representative its (partial) colour bar we can simply
restrict the number of representatives constructed while still covering all F-classes
on M. The test for the permitted colours can take place in step 8 of Algorithm 6,

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1643

as at this point the colour bar of the image is already determined. We modify
Algorithm 6 as follows:

Algorithm 13 (Classes of a subdirect product under further component fusion).
We assume that ColourOfClass gives the colour for a class and that the list
allowedccolourbars is the result from Algorithm 11. Furthermore we will keep a
list colourbar to give the (partial) colourbars of the representatives.

3'. [New component] Let w: (= , ... ,ri); Mproj := Mvw and Lloc:= L7ri. Let
new-reps:= []; new-cent:= []; new-cenLindex:= []; centLirnages:=
cenLimg-index:= []. Let newucolourbar:= [].

7'. [Determine all representatives belonging to this centralizer image] Let
C := cent-imagesj. Let select-cen := {k I cent-img-indexk = j} be the set of
all centralizer indices with the same (enlarged) centralizer image. Let
select := {k I cent-indexk E selecLcen} be the set of indices of those
representatives that might be extended here.

7a. [Determine the addable colours] Let possible-colours:= { }. For k E select let
bar:= colourbark. Let

potentiaL bars:= {b E allowed&colourbars I b[1,=,i_] bar}

and let

possible-colours possible-colours U {bi I b E potentiaLbars}.

7b. [Run through the classes with correct colours] For those k from 1 to number2
whose colour is in possible-colours execute steps 8-16.

9'. [Continue one partial representative] Let cen := centralizerst. Let
select:= {Il cenLindex1 = t} be the set of indices of those representatives
whose partial centralizer is cen.

Let 77 := 7d(cen), new-cenLlocal:= [] and new-cent-locaLindex:= []. For
all d from dc execute for all s from select the steps 9a-13:

9a. [Test whether this colour may be added here]
Let bar:= colourbar, U [ColourOfClass(k)].
If there is no bar c E allowedLcolourbars for which c[, i] = bar then go to

step 13.
12'. [Store the new element] Add elm to new-reps, bar to newucolourbar and add

p to new-cenLlocaLindex.
17'. [End of component loop] Replace centindex by new-cent_index, colourbar by

new-colourbar, and reps by new-reps. End the loop of step 2.

Finally, among the representatives obtained by the modified algorithm, some
further fusion by F may take place, but only among those representatives with the
same colour bars. Two representatives a, b E M with the same colour bar c that are
conjugate in F must be conjugate already in StabF (c). So conjugacy tests actually
only need to be performed among those representatives with unlucky colour bars.
In this situation the conjugacy test takes place in StabF(c), which is often a smaller
group than F:

18. [Prepare for further F-fusion] Let new-reps []; For every bar E colourbar
execute step 19

19. [Fuse among classes with colour bar bar] Let cand be the set of those repre-
sentatives in reps which have colour bar bar. Using conjugacy tests, compute

1644 ALEXANDER HULPKE

a set fuse of StabF(bar)-representatives among the elements in cand. Append
fuse to new-reps.

At the end of this loop new-reps contains representatives of the F-classes of
elements in M.

8. OBTAINING THE OUTER CLASSES

We now can compute the F-classes of elements in M. What remains to be done
is the classes of elements of F not contained in M, the outer classes.

In contrast to the classes within M, F usually has very few outer classes (see
the examples in Section 11). Some of these outer classes can be relatively small,
however, and so a pure random search is not feasible.

To obtain these outer classes, we recall the general idea of [15]: Let P := F/M,
and 4: F -* P the natural homomorphism. Let r be the representative of a class
of P. Then representatives of those classes of F that map under 4 into the class

-1
of r4 can be found as representatives of the Z (Cp(ro)) 4'-orbits on the coset
rM. As for z e Z we have

(rm)z = rzmZ = r[r, z]mZ

with [Ir, z] e M, this induces an action on M by

m-+ [r, z]mz.

Here, in general, however, M is too big to pursue this actual action.
As in Section 4, we will now first restrict the conjugating group acting on D

from Z to M < Z. As we may embed F in Aut(T)? Sn, the action of M on M is a
restriction of the action of M on D given by

(14) d -* [r,m]dm.

Let M = (mi1,... , mn) E M, d = (a,.... , an) e D, [r, m] =: ([r, m], , n),
the cartesian decomposition. Then the action (14) becomes

d -* [r, m]dm = ([r, m]1a7',... , [r, m]na').
This action thus is the composition of the action of the components Ai by

(15) ai - [r,m]iaami.

Now, to obtain representatives of the M-orbits on M under this action, we again
proceed componentwise: we first compute the M-orbits on A1. Then for each
representative r1 we compute the StabM(rl) orbits on A2, and so on. We thus
obtain orbit representatives in the form (r, . . . , rn). As above, to obtain the orbits
on M we have to discard those representatives that are not contained in M (as
r normalizes M, the action (14) fixes M set-wise), and we can simply discard all
partial representatives (ri,... ,ri) which are not contained in the projection image
M(1,... i)

As long as the size of the Ai is small we can simply run a standard orbit/stabilizer
algorithm. For a large Ai (as in the example in the introduction for which Ai -

S1l), however, this is not possible as we cannot store all elements. A standard
technique in such cases is the use of tadpoles [7]. Let U be a subgroup of the
acting group. Whenever elements are encountered a "standard" representative
under action of U is computed (the iterative process usually used here gives rise

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1645

to the name "tadpole") and only this representative is stored. This permits us to
reduce the number of elements to store roughly by JUI.

In our situation we will take U to be a subgroup that centralizes r. (Any larger
group would change r and thus leave the operations domain.) Then for U the
action (15) reduces to a simple conjugation action, and we can take the "standard"
U-representatives to be computed representatives of the U-classes on Ai. (Again,
as above, these classes can be computed by conjugating class representatives a with
representatives of the double cosets CA, (a)\Ai/U.) This permits us to compute the
U-classes a priori and to simplify the orbit algorithm to fusion of the U-orbits.
Section 9 explains how to proceed to obtain representatives of the M-orbits for
these.

To get the largest possible subgroup we take U in each step (when computing
possible representatives in the (i + 1)-th component with entries ri,... ,ri in the
prior components) to be the intersection of the centralizer CF(r) of r with the
acting group StabM(1,r.. ., ri). Note that we have IMI choices for r. To minimize
the number of U-orbits, we try to maximize CF(r), which is fulfilled if the order
of r is minimal possible. Let o be the order of rb. Then we need ro = (9, which
means that (r) intersects trivially with M.

Lemma 16. For each cycle in the action of Mr on the components pick one compo-
nent index. Let I be the set of these indices. If there is an m E M with m7ri = (r?)7ri
for all i E I and mirj = () for all j 0 I, then r r/m is an element with r/ = rb
and r?= ()

Proof. By considering the orbits on the components separately, we can assume
without loss of generality that r acts transitively and I = {1}. Let j be a point
from the first component. Then j(rt) (1 < o) is in a component on which m does
act trivially. Accordingly

-(P) j(rm-lrrm-l) = j(rO/m) = j

by the definition of m, as j is in the first component. So r? acts trivially on the
first component. As every point k is the image k = jQ'r) (1 < o) for a j in the first
component, we have similarly

k(rV) = (.(rt))(rO) = jVl+O) - (.(io))(Vl) = j(jP) = k

and thus r? = (). O

If no suitable element of M can be found, we simply select an r with a large
centralizer.

To continue in the next component we also need the stabilizer in U of the orbit
representative (which will be the intersection of U with the stabilizer mentioned
above). This stabilizer is simply (the full preimage of) the centralizer in U.

Remark 17. If U is not normal in G and several orbits of U get fused, however,
these centralizers can be of different sizes. Therefore we sort the orbits of U in
ascending size and pick always the smallest one as representative for starting the
G-orbit. This allows us to continue in the next component with as large a U as
possible.

Finally, we have to fuse the M-orbits to Z-orbits. As by Remark 5 [F: M] is
small, also [Z: M] is small and thus not much fusion will take place. We also

1646 ALEXANDER HULPKE

observe that in general M is already quite big and has large orbits; thus only few
classes have to be fused. Therefore this fusion test is done in a straightforward way
by testing conjugacy of the elements obtained so far. (Obviously we can restrict
this fusion test to elements with the same cycle structure and centralizer orders.)

This finishes the description of the non-abelian lifting step which computes the
classes of G, provided the classes of G/N are known. To summarize: Assigning
F := G/CG(N), we first compute the F-classes of M. This is done by Algorithm 13
and an additional fusion among representatives with the same unlucky colour bars.
Afterwards we compute the F-classes outside M as in Section 8. Finally, we combine
the classes of G/N and those of F = G/C to classes of G = (G/N)1-t F using
Algorithm 6. We then proceed inductively for the next chief factor.

9. AN ORBIT-FUSING ALGORITHM

(This section uses its own notation to simplify variable names.) Let G be a
(finite) group acting on Q via the operation ,t: Q x G -- Q. Furthermore let
U < G and v :I= ,Iu be the restriction of the operation. We assume that we know
representatives {wi} of the U-orbits on Q and their stabilizers, that we can find, for
any a E Q, in which U-Orbit it lies, and that we can compute u E U with (U = wi
for the suitable i. We want to obtain representatives and stabilizers of the G-orbits.
As we already know the U-orbits, we use a slightly modified orbit algorithm that
will always add a full U-orbit. However we want to avoid mapping all elements of
Q with generators of G but try to restrict ourselves (as far as possible, impossible
in general) to mapping only the wi: we store which U-orbits wu are contained in
the G-orbit. If we have mapped all wi with all generators of G and the product of
orbit length (the sum of the I w u) and stabilizer size is smaller than IGC, we did not
yet reach the full orbit or full stabilizer. In this situation we start mapping other
points wg' (u E U) until this condition is fulfilled.

Algorithm 18. (Fuse U-orbits under the action of G > U)

1. [Initialization] Let orb:= [w1], stab := Stabu(wi) and trans := [()], let
iterate := false and pos := 1

2. [Orbit loop] Let w := orb[pos]. For every generator gen of G execute steps
3-7.

3. [Pick up further elements to map] If iterate then let u be a random element
of U and set gen:= u* gen.

4. [Compute image and its canonical U-representative] Compute
img:= ,u(w, gen). Let j be the index for which wj is in the U-orbit of img.
Compute v E U with v(w1, v) = wj and let gen:= gen. v. Let
transgen:= trans[pos] . gen. (Now transgen maps wi to wj.)

5. [Did we extend the orbit?] If wj E orb then go to step 6. Otherwise add wj
to orb and add transgen to trans. For each generator s of Stabu(wj) let
stab:= (stab, transgen* s* transgen-1) Go to step 7.

6. [Extend stabilizer] Assume that orb[i] = wj. Let
stab := (stab, transgen . trans[i] -1)

7. End the gen-loop of step 2
8. [New orbit index] Increment pos. If pos > lorbl then set pos 1 and

iterate:= true.
9. [Test for full orbit/stabilizer] If Istabl . Zweorb lu| I IGI then go to step 2.

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1647

When the algorithm terminates, orb contains those wi whose U-orbits form the
G-orbit and stab = StabG(W1). Iterated application gives all G-orbits.

Proof. Observe that the elements added in steps 5 and 6 all stabilize w1. By the
orbit theorem the algorithm will terminate if we have found the full orbit and full
stabilizer. By iterating we will finally (if the random function is really random)
have mapped all orbit elements, so to show correctness it is sufficient to prove that
the stabilizer generators added in step 6 finally will generate all Schreier generators
of the stabilizer.

This is seen easily if we define the transversal T (which gives rise to all these
Schreier generators) based on the computed transversal trans. That is, every ele-
ment of T is of the form tu with t E trans and u E U. The random element u in
step 3 will finally give rise to all elements of T.

Suppose that we map t u E T with the generator gen and that the transversal
element for the image is t'u'. (We have t = trans[pos] and t' = trans[i].) This gives
rise to the Schreier generator s := t u gen (u') 1(t')-1. On the other hand, the
element v computed in step 4 will have t . u gen v mapping the representative to
an image corresponding to the transversal element t'. In step 6 then we add the
element s' t u gen . v (t')-1 to the stabilizer. As u'v E Stabu (wf) and thus
v 1(u') s =1 si for suitable generators si of Stabu(wf), we have that

= t. u. gen(V -1)(u')-1 (t')-1 = t. u. genrt v((t')1t)(v1 (u))(t)

= (t u. genr v* (t')-1)t'(s . s1)(t')-l = 171 5t')1

i=l1

The 5it) have been added already in step 5. So we have finally s E stab, which
is what had to be proved. O

When picking the random element in step 3 it is sufficient to pick a u which is
not in U n U(gen'), because otherwise u* gen = gen ii with ii E U and so the
image will not lie in a different U-orbit. If no such elements exist, the generator
can be ignored when iterating.

Remark 19. As we know the size of the acting group and the orbit lengths, we
may sometimes complete orbits without having computed all images: the length of
the orbit must divide the order of the acting group. Suppose we have computed
a partial orbit orb of length 1 = Ewjorb e Iw and stabilizer subgroup stab. If for
the smallest divisor d of IGC which is not smaller than 1 (d = min{e C IGI I e > d})
we have that d Istabl = IGC, we know that stab is the stabilizer and that the full
orbit is of length d. If there is only one possibility to add up the sizes of remaining
U-orbits to obtain d - 1 these orbits have to be added to orb to obtain the full
G-orbit. This can be particularly helpful if one small U-orbit is missing.

Usually the algorithm will finish with none or very few iterations and terminate
much quicker than when running through all U-images v(wi, u) in a more orderly
way.

If some of the U-orbits are small in average, it is relatively unlikely that they
will be hit. Therefore it is preferable to pick w1 to be the representative with the
smallest U-orbit. As a side effect, this permits one to start with the largest possible
stabilizer and is consistent with the choice needed by Remark 17.

1648 ALEXANDER HULPKE

10. IMPLEMENTATIONAL ISSUES

The whole algorithm now stands as described in the introduction. We compute
a series of normal subgroups with elementary factors: G = No > N1 > >..

Nr = (1), and inductively compute the classes of G/Ni from those of G/Ni-1. For
an abelian Nill/Ni the algorithm of [15] is used, and in the non-abelian case the
method described in Sections 3 to 8 is used.

10.1. Factor representations. The algorithm will require us to compute in factor
groups. Following Remark 8, however, it is often not necessary to construct a
concrete representation of the factor groups, but computation can proceed using
coset representatives of full preimages of subgroups.

For the factor groups for which we need to compute a representation, however,
small faithful permutation representations can easily be found:

The factor groups F = G,o are obtained in Section 3 by action on chief factors.
As shown there, F can be embedded into Aut(T)? Sn. Using a faithful permutation
representation for Aut(T) (such a representation is of relatively small degree, as
T is simple non-abelian), we obtain a moderate degree permutation representation
for the wreath product and thus for the factor F.

We now consider the lifting situation of Section 3 (G being a subdirect product
of G/N and F) with G being a factor group of a (probably larger) group H. We
thus want to defer computations in G to computations in H. As we can find a
good permutation representation for F, the full preimage of C = CG(N) in H is
just the kernel of the homomorphism H -+ F, and is computable as such. We
also may assume by induction that we already have class representatives and full
preimages in H of the centralizers in G/N. Then (by Remark 8) we can use these
preimages in Algorithm 6 and obtain representatives in X of class representatives
for G. Similarly we obtain (preimages in H of) the centralizers in G by Remark 7
from the centralizers in G/N and F. Furthermore we may assume F to be the
second component of the subdirect product. Then by Remark 9 all computations
for the algorithm will take place in F, which has a good permutation representation.

This yields representatives for the classes and preimages of the centralizers, re-
quired inductively if G becomes a G/N in the next step.

For abelian chief factors, the methods from [15] mainly require us to compute
the affine action on the vector space. This can be computed without a factor
representation by identifying cosets.

10.2. Choice of the normal series. The choice of the normal series can affect
the algorithm's performance. In general the series should be chosen to have in
each non-abelian step as small as possible a common factor group in the subdirect
product of G/N with F. (The best case would be a direct product that is factor
size 1, for which the classes are simply obtained as a cartesian product.)

Conversely, it might happen (especially in the first steps of the algorithm) that
C = 1 and thus G/N is isomorphic to a factor of F. In this situation, of course, the
classes of G are just the classes of F and G/N, and the fusion step is discarded.

1 1. EXAMPLES

The described algorithm has been implemented by the author in GAP 4 [9]. We
give some results of this experimental implementation in Table 1. All runtimes are
seconds on a 200MHz Pentium Pro machine running under Linux. The nonstandard

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1649

TABLE 1. Results of conjugacy class computations

Group Size deg C timestd time
21+4+6 A8 (< C02) 21732 . 5 .7 240 111 287 122
25+8.(A6 X S3) (< Fi22) 21733 * 5 106 1920 401 355
[lS54JV4 l A6.V4 2153655 30 1591 1161 708

2 [PGL2(9)3]S3(impr.) 2123753 30 218 86 139
2 [PGL2(9)3]S3(prd.) 2123753 1000 218 194 180
2[S]S-3 1 2[S5]S3 2173756 30 6115 2458 2 S32

M12.2 lt. A6.V4 -l S9 21739537 11 43 2286 2396 1177
C2 C2

Column "deg" gives the degree of the permutation representation used, "C" gives the
total number of classes, column "'timestd" is the runtime for the standard conjugacy
class algorithm following [3, 20] as implemented in GAP 4, and column "time" the
runtime for the author's implementation. A "-" indicates that the computation did not
finish in three times the time used by the other algorithm.

TABLE 2. Results for subgroups of wreath products

Group F IFl deg [F:M] C Out part timestd time

[2S1]2 216385472112 22 2 874 58 2.5 10-8 1061 363

2 [S1]2 216385472112 22 2 868 54 1.3 .10-6 1026 944

2 [S12]2 2203105472112 24 2 1600 74 1.3 10-7 4248 2914
2 [A4.2] S4 2113554 20 24 118 68 3.6 10-5 66 70

[(L7.2)3]S3 2123473 24 6 135 50 2.9 10-4 64 66

[S4]D(4) 2183854 24 8 1645 513 1.5 10-9 2282 1158
A7 C4 214385474 28 4 1728 63 5.2. 10-8 1330 428
1 [(L: 3)3]3 263453113 36 3 192 16 7.5. 10-4 37 25
[PSL2(11)3 2]C3 273453113 36 3 228 26 3.7 10-4 49 80

In addition to the data given in Table 1, column "Out" gives the number of classes
outside M, and "part" the ratio of the smallest outer class within all outer classes.

names refer to constructions as explained in [6]. If solvable normal subgroups exist,
the use of homomorphic images always improves the performance. Thc table gives
only one example of this kind, as the behaviour of other such groups does not vary
much from the given one and as the method used has been well-known for a couple
of years; extensive runtime studies are given in [5]. Therefore all other examples
selected do not have a solvable normal subgroup.

The group [PGL2 (9)3]S3 is the same group isomorphism type given in two
different permutation representations (imprimitive and product action). While the
standard algorithm depends substantially on the degree of the representation, the
new algorithm (which performs all hard calculations in the factor group F for which
a small degree permutation representation is computed) is fairly independent of it.

The building blocks of the new part of the algorithm are the subgroups of wreath
products, described as F in Section 3. We list a few extra results for a random
selection of them in Table 2. Observe that, as promised, the number of outer classes
usually is small compared with the total number of classes, but some classes are very

1650 ALEXANDER HULPKE

small, so a random search for outer classes as proposed in [5] will not necessarily
work. We also see that these groups usually have very many classes in total, so
even a modified random search along the lines of [12] is therefore not suitable.

A notable exception among the otherwise satisfactory runtimes is 1[S21]2, for
which the new algorithm yields only a minimal improvement. In this group (the
wreath product S11 2 has 3 normal subgroups of index 2 namely [S21]2, 2 [S21]2
and Sf1; see [6] for explanation of the names) the block action C2 is not "bodily",
that is, the group does not split over its normal subgroup S21.2. Consequently, the
centralizer CF(r) is relatively small and thus has many small orbits which are hard
to fuse. However the loss in comparison to the standard algorithm is only due to
the small size, as the similarly built 2 [S2] 2 shows.

In general, we deduce from comparison with the standard algorithm that the
group must be large enough to make the new algorithm worth using; otherwise the
setup of the series and the subdirect products takes too long.

On the other hand, the algorithm is capable of dealing with groups which the
standard algorithm is incapable of, and may become useful in these cases.

12. CLOSING REMARKS

The algorithm presented in this note does not rely on G being a permutation
group. All parts of the calculations which depend on the representation are kept in
routines called (mainly: composition series, Double cosets and Homomorphisms).
As soon as such routines are provided for other types of group representations, the
algorithm becomes available there.

The parametrization of classes used here may also be used to run through the
classes of a large group without storing all class representatives at once.

The author would like to thank Steve Linton for helpful comments on a first
draft.

13. LIST OF SYMBOLS

Ai constituent groups of M n T- "dimension" of N
C CG(N) P F/M_FO
C0 pre-image in M of centralizer in r representative in F of P-class

Mwj S component stabilizer
n -1

D direct product x Ai (StabFf,(1))
d element of D T simple group, N T
E image N(o < F U subgroup that centralizes r
F Gp - G/C Z full centralizer preimage
C Group for which we want to (Cp(r -1))

compute the conjugacy classes C : F, action of C on N
Li= ni i ker 7ri < M, subgroup -i : M - Ai, component projection

acting on one component only wi = (7r1,... ., 7r), projection on first
L = (Li) i components
M subdirect product, for example : F - P, action on the

ker , components of N.
m element of M -1
N elementary (minimal) normal 0 full preimage under ,

subgroup of G

CONJUGACY CLASSES IN FINITE PERMUTATION GROUPS 1651

REFERENCES

[1] Robert Beals and Akos Seress, Structure forest and composition factors for small base groups
in nearly linear time, Proceedings of the 24th ACM Symposium on Theory of Computing,
ACM Press, 1992, pp. 116-125.

[2] Gregory Butler, Computing in permutation and matrix groups II: Backtrack algorithms,
Math. Comp. 39 (1982), no. 160, 671-670. MR 83k:20004b

[3] Greg[ory] Butler, An inductive scheme for computing conjugacy classes in permutation
groups, Math. Comp. 62 (1994), no. 205, 363-383. MR 94c:20011

[4] John Cannon and Derek Holt, Computing chief series, composition series and socles in large
permutation groups, J. Symbolic Comput. 24 (1997), 285-301. MR 98m:20009

[5] John Cannon and Bernd Souvignier, On the computation of conjugacy classes in permutation
groups, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Com-
putation (Wolfgang Kiuchlin, ed.), The Association for Computing Machinery, ACM Press,
1997, pp. 392-399.

[6] John H. Conway, Alexander Hulpke, and John McKay, On transitive permutation groups,
LMS J. Comput. Math. 1 (1998), 1-8. (electronic) CMP 98:15

[7] Gene Cooperman and Michael Tselman, Using tadpoles to reduce memory and communica-
tion requirements for exhaustive, breadth-first search using distributed computers, Proceed-
ings of ACM Symposium on Parallel Architectures and Algorithms (SPAA-97), ACM Press,
1997, pp. 231-238.

[8] Volkmar Felsch and Joachim Neubiiser, An algorithm for the computation of conjugacy
classes and centralizers in p-groups, Symbolic and Algebraic Computation (Proceedings of
EUROSAM 79, An International Symposium on Symbolic and Algebraic Manipulation, Mar-
seille, 1979) (Edward W. Ng, ed.), Lecture Notes in Computer Science, 72, Springer, Heidel-
berg, 1979, pp. 452-465. MR 82d:20003

[9] The GAP Group, School of Mathematical and Computational Sciences, University of St
Andrews, and Lehrstuhl D fur Mathematik, RWTH Aachen, GAP - Groups, Algorithms, and
Programming, Version 4, 1998.

[10] Daniel Gorenstein, Finite simple groups, Plenum Press, 1982. MR 84j:20002
[11] Alexander Hulpke, Konstruktion transitiver Permutationsgruppen, Ph.D. thesis, Rheinisch-

Westfailische Technische Hochschule, Aachen, Germany, 1996.
[12] Mark Jerrum, Computational Polya theory, Surveys in Combinatorics, 1995 (Stirling) (Peter

Rowlinson, ed.), London Mathematical Society Lecture Note Series, vol. 218, Cambridge
University Press, 1995, pp. 103-118. MR 96h:05012

[13] William M. Kantor and Eugene M. Luks, Computing in quotient groups, Proceedings of the
22nd ACM Symposium on Theory of Computing, Baltimore, ACM Press, 1990, pp. 524-563.

[14] Eugene M. Luks, Computing the composition factors of a permutation group in polynomial
time, Combinatorica 7 (1987), 87-89. MR 89c:20007

[15] M[atthias] Mecky and J[oachim] Neubuiser, Some remarks on the computation of conjugacy
classes of soluble groups, Bull. Austral. Math. Soc. 40 (1989), no. 2, 281-292. MR 90i:20001

[16] Peter M. Neumann, Some algorithms for computing with finite permutation groups, Groups -
St Andrews 1985 (Edmund F. Robertson and Colin M. Campbell, eds.), Cambridge University
Press, 1986, pp. 59-92. MR 89b:20004

[17] Richard Parker, The Computer Calculation of Modular Characters (the MeatAxe), Compu-
tational Group Theory (Michael D. Atkinson, ed.), Academic Press, 1984, pp. 267-274. MR
85k:20041

[18] Charles C. Sims, Determining the conjugacy classes of a permutation group, Computers in Al-
gebra and Number Theory (Garrett Birkhoff and Marshall Hall Jr., eds.), SIAM-AMS Proc.,
vol. 4, American Mathematical Society, Providence, RI, 1971, pp. 191-195. MR 49:2901

[19] , Computing the order of a solvable permutation group, J. Symbolic Comput. 9 (1990),
699-705. MR 91m:20011

[20] Heiko TheiBen, Methoden zur Bestimmung der rationalen Konjugiertheit in endlichen Grup-
pen, Diplomarbeit, Lehrstuhl D fur Mathematik, Rheinisch-Westfailische Technische Hoch-
schule, Aachen, 1993.

SCHOOL OF MATHEMATICAL AND COMPUTATIONAL SCIENCES, UNIVERSITY OF ST. ANDREWS,
THE NORTH HAUGH, UK-ST ANDREWS, FIFE KY16 9SS, SCOTLAND

E-mail address: ahulpkeQdcs .st-and. ac .uk

